

Deep Learning for Data Science DS 542

https://dl4ds.github.io/fa2025/

Supervised Learning

Supervised learning

- Examples
- Terminology
- Notation
 - Model
 - Loss function
 - Training
 - Testing
- 1D Linear regression example
 - Model
 - Loss function
 - Training
 - Testing

Artificial intelligence Machine learning Supervised Unsupervised Reinforcement learning learning learning Deep learning

Supervised learning

- Define a mapping from input to output
- Learn this mapping from paired input/output data examples

What is a supervised learning model?

- An equation relating input (age) to output (height)
- Search through family of possible equations to find one that fits training data well

What is a supervised learning model?

- Deep neural networks are just a very flexible family of equations
- Fitting deep neural networks = "Deep Learning"

Prediction Types

- Regression
 - Prediction a continuous valued output

- Classification
 - Assigning input to one of a finite number of classes or categories
 - Two classes are a special case

Can be univariate (one output) or multivariate (more than one output)

Regression

- Univariate regression problem (one output, real value)
- Fully connected network

Graph regression

- Multivariate regression problem (>1 output, real value)
- Graph neural network

Text classification

- Binary classification problem (two discrete classes)
- Transformer network

Music genre classification

- Multiclass classification problem (discrete classes, >2 possible values)
- Recurrent neural network (RNN)

Image classification

- Multiclass classification problem (discrete classes, >2 possible classes)
- Convolutional network

Image segmentation

- Multivariate binary classification problem (many outputs, two discrete classes)
- Convolutional encoder-decoder network

Depth estimation

- Multivariate regression problem (many outputs, continuous)
- Convolutional encoder-decoder network

Pose estimation

- Multivariate regression problem (many outputs, continuous)
- Convolutional encoder-decoder network

Translation

Encoder-Decoder Transformer Networks

Image captioning

• E.g. CNN-RNN, LSTM, Transformers

Image generation from text

Supervised Learning Classification and Regression Applications

Regression

• Univariate regression problem (one output, real value)

Any Questions?

Supervised learning

- Examples
- Terminology
- Notation
 - Model
 - Loss function
 - Training
 - Testing
- 1D Linear regression example
 - Model
 - Loss function
 - Training
 - Testing

Supervised learning terminology

- Supervised learning model = mapping from one or more inputs to one or more outputs
- Model is a family of equations → "inductive bias"
- Computing the outputs from the inputs → inference
- Model also includes parameters
- Parameters affect outcome of equation
- Training a model = finding parameters that predict outputs "well" from inputs for training and evaluation datasets of input/output pairs

Supervised learning

- Examples
- Terminology
- Notation
 - Model
 - Loss function
 - Training
 - Testing
- 1D Linear regression example
 - Model
 - Loss function
 - Training
 - Testing

Notation:

• Input:

 \mathbf{X}

• Output:

y

• Model:

$$\mathbf{y} = \mathbf{f}[\mathbf{x}]$$

Normal lower case = scalar Bold lower case = vector Capital Bold = matrix

Functions always square brackets

Normal lower case = returns scalar Bold lower case = returns vector Capital Bold = returns matrix²⁵

Notation example:

• Input:

$$\mathbf{x} = \begin{bmatrix} age \\ mileage \end{bmatrix}$$

Vector:
Structured or tabular data

• Output:

$$y = [price]$$

Scalar output

Model:

$$y = f[\mathbf{x}]$$

Scalar output
function
(with vector input)

Model

• Parameters:

• Model:

$$\mathbf{y} = \mathbf{f}[\mathbf{x}, oldsymbol{\phi}]$$

Data Set and Loss function

• Training dataset of *I* pairs of input/output examples:

$$\{\mathbf{x}_i,\mathbf{y}_i\}_{i=1}^I$$

Data Set and Loss function

• Training dataset of I pairs of input/output examples:

$$\{\mathbf x_i, \mathbf y_i\}_{i=1}^I$$

Loss function or cost function measures how bad model is:

$$L\left[\phi, \mathbf{f}[\mathbf{x}, \phi], \{\mathbf{x}_i, \mathbf{y}_i\}_{i=1}^{I}\right]$$
 model train data

Data Set and Loss function

Training dataset of I pairs of input/output examples:

$$\{\mathbf{x}_i, \mathbf{y}_i\}_{i=1}^I$$

Loss function or cost function measures how bad model is:

$$L\left[\boldsymbol{\phi}, \mathbf{f}[\mathbf{x}, \boldsymbol{\phi}], \{\mathbf{x}_i, \mathbf{y}_i\}_{i=1}^{I}\right]$$
model train data

or for short:

Training

• Loss function:

$$L\left[oldsymbol{\phi}
ight]$$
 Returns a scalar that is smaller when model maps inputs to

outputs better

• Find the parameters that minimize the loss:

$$\hat{\boldsymbol{\phi}} = \operatorname*{argmin}_{\boldsymbol{\phi}} \left[\operatorname{L} \left[\boldsymbol{\phi} \right] \right]$$

Any Questions?

Supervised learning

- Examples
- Terminology
- Notation
 - Model
 - Loss function
 - Training
 - Testing
- 1D Linear regression example
 - Model
 - Loss function
 - Training
 - Testing

Example: 1D Linear regression model

• Model:

$$y = f[x, \phi]$$
$$= \phi_0 + \phi_1 x$$

Parameters

$$oldsymbol{\phi} = egin{bmatrix} \phi_0 \ \phi_1 \end{bmatrix}$$
 — slope

Example: 1D Linear regression model

• Model:

$$y = f[x, \phi]$$
$$= \phi_0 + \phi_1 x$$

Parameters

Example: 1D Linear regression model

• Model:

$$y = f[x, \phi]$$
$$= \phi_0 + \phi_1 x$$

Parameters

$$oldsymbol{\phi} = egin{bmatrix} \phi_0 \ \phi_1 \end{bmatrix} ullet ext{ ext{y-offse}} \ ext{ ext{ ext{\leftarrow}} ext{ slope}}$$

Example: 1D Linear regression model

• Model:

$$y = f[x, \phi]$$
$$= \phi_0 + \phi_1 x$$

Parameters

Loss function:

$$L[\phi] = \sum_{i=1}^{I} (f[x_i, \phi] - y_i)^2$$
$$= \sum_{i=1}^{I} (\phi_0 + \phi_1 x_i - y_i)^2$$

Loss function:

$$L[\phi] = \sum_{i=1}^{I} (f[x_i, \phi] - y_i)^2$$
$$= \sum_{i=1}^{I} (\phi_0 + \phi_1 x_i - y_i)^2$$

Loss function:

$$L[\phi] = \sum_{i=1}^{I} (f[x_i, \phi] - y_i)^2$$
$$= \sum_{i=1}^{I} (\phi_0 + \phi_1 x_i - y_i)^2$$

Loss function:

$$L[\phi] = \sum_{i=1}^{I} (f[x_i, \phi] - y_i)^2$$
$$= \sum_{i=1}^{I} (\phi_0 + \phi_1 x_i - y_i)^2$$

"Least squares loss

Interactive Figure 2.2"

Loss function:

$$L[\phi] = \sum_{i=1}^{I} (f[x_i, \phi] - y_i)^2$$
$$= \sum_{i=1}^{I} (\phi_0 + \phi_1 x_i - y_i)^2$$

Possible objections

- But you can fit the line model in closed form!
 - Yes but we won't be able to do this for more complex models
- But we could exhaustively try every slope and intercept combo!
 - Yes but we won't be able to do this when there are a million parameters

- Test with different set of paired input/output data (Test Set)
 - Measure performance
 - Degree to which Loss is same as training = generalization
- Might not generalize well because
 - Model too simple: underfitting
 - Model too complex
 - fits to statistical peculiarities of data
 - this is known as overfitting

Any Questions?

Next Lecture

• How do we choose a loss function in a principled way?